MNFExample.cxxΒΆ
Example usage:
./MNFExample Input/wv2_cannes_8bands.tif \
Output/MNFOutput.tif \
Output/InverseMNFOutput.tif \
Output/MNF-input-pretty.png \
Output/MNF-output-pretty.png \
Output/MNF-invoutput-pretty.png \
8 \
1 \
1
Example source code (MNFExample.cxx):
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
// This example illustrates the use of the
// \doxygen{otb}{MNFImageFilter}. This filter computes a Maximum
// Noise Fraction transform \cite{green1988transformation} using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The Maximum Noise Fraction transform is a sequence of two Principal
// Component Analysis transforms. The first transform is based on an
// estimated covariance matrix of the noise, and intends to whiten the
// input image (noise with unit variance and no correlation between
// bands).
//
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the Maximum Noise Fraction transform.
//
// In this implementation, noise is estimated from a local window.
//
// The first step required to use this filter is to include its header file.
#include "otbMNFImageFilter.h"
// We also need to include the header of the noise filter.
//
// SoftwareGuide : EndLatex
#include "otbLocalActivityVectorImageFilter.h"
int main(int itkNotUsed(argc), char* argv[])
{
using PixelType = double;
const unsigned int Dimension = 2;
const char* inputFileName = argv[1];
const char* outputFilename = argv[2];
const char* outputInverseFilename = argv[3];
const unsigned int numberOfPrincipalComponentsRequired(atoi(argv[7]));
const char* inpretty = argv[4];
const char* outpretty = argv[5];
const char* invoutpretty = argv[6];
unsigned int vradius = atoi(argv[8]);
bool normalization = atoi(argv[9]);
// We start by defining the types for the images, the reader, and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// components) from a multi-channel input image.
using ImageType = otb::VectorImage<PixelType, Dimension>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We instantiate now the image reader and we set the image file name.
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
// In contrast with standard Principal Component Analysis, MNF
// needs an estimation of the noise correlation matrix
// in the dataset prior to transformation.
//
// A classical approach is to use spatial gradient images
// and infer the noise correlation matrix from it.
// The method of noise estimation can be customized
// by templating the \doxygen{otb}{MNFImageFilter}
// with the desired noise estimation method.
//
// In this implementation, noise is estimated from a local window.
// We define the type of the noise filter.
// SoftwareGuide : BeginCodeSnippet
using NoiseFilterType = otb::LocalActivityVectorImageFilter<ImageType, ImageType>;
// SoftwareGuide : EndCodeSnippet
// We define the type for the filter. It is templated over the input
// and the output image types and also the transformation direction. The
// internal structure of this filter is a filter-to-filter like structure.
// We can now the instantiate the filter.
using MNFFilterType = otb::MNFImageFilter<ImageType, ImageType, NoiseFilterType, otb::Transform::FORWARD>;
MNFFilterType::Pointer MNFfilter = MNFFilterType::New();
// We then set the number of principal
// components required as output. We can choose to get less PCs than
// the number of input bands.
MNFfilter->SetNumberOfPrincipalComponentsRequired(numberOfPrincipalComponentsRequired);
// We set the radius of the sliding window for noise estimation.
NoiseFilterType::RadiusType radius = {{vradius, vradius}};
MNFfilter->GetNoiseImageFilter()->SetRadius(radius);
// Last, we can activate normalisation.
MNFfilter->SetUseNormalization(normalization);
// We now instantiate the writer and set the file name for the
// output image.
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
// We finally plug the pipeline and trigger the MNF computation with
// the method \code{Update()} of the writer.
MNFfilter->SetInput(reader->GetOutput());
writer->SetInput(MNFfilter->GetOutput());
writer->Update();
// \doxygen{otb}{MNFImageFilter} allows also to compute inverse
// transformation from MNF coefficients. In reverse mode, the
// covariance matrix or the transformation matrix
// (which may not be square) has to be given.
using InvMNFFilterType = otb::MNFImageFilter<ImageType, ImageType, NoiseFilterType, otb::Transform::INVERSE>;
InvMNFFilterType::Pointer invFilter = InvMNFFilterType::New();
invFilter->SetMeanValues(MNFfilter->GetMeanValues());
if (normalization)
invFilter->SetStdDevValues(MNFfilter->GetStdDevValues());
invFilter->SetTransformationMatrix(MNFfilter->GetTransformationMatrix());
invFilter->SetInput(MNFfilter->GetOutput());
WriterType::Pointer invWriter = WriterType::New();
invWriter->SetFileName(outputInverseFilename);
invWriter->SetInput(invFilter->GetOutput());
invWriter->Update();
// Figure~\ref{fig:MNF_FILTER} shows the result of applying forward
// and reverse MNF transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MNF-input-pretty.eps}
// \includegraphics[width=0.32\textwidth]{MNF-output-pretty.eps}
// \includegraphics[width=0.32\textwidth]{MNF-invoutput-pretty.eps}
// \itkcaption[PCA Filter (forward trasnformation)]{Result of applying the
// \doxygen{otb}{MNFImageFilter} to an image. From left
// to right:
// original image, color composition with first three principal
// components and output of the
// inverse mode (the input RGB image).}
// \label{fig:MNF_FILTER}
// \end{figure}
// This is for rendering in software guide
using PrintFilterType = otb::PrintableImageFilter<ImageType, ImageType>;
using VisuImageType = PrintFilterType::OutputImageType;
using VisuWriterType = otb::ImageFileWriter<VisuImageType>;
PrintFilterType::Pointer inputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer outputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer invertOutputPrintFilter = PrintFilterType::New();
VisuWriterType::Pointer inputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer invertOutputVisuWriter = VisuWriterType::New();
inputPrintFilter->SetInput(reader->GetOutput());
inputPrintFilter->SetChannel(5);
inputPrintFilter->SetChannel(3);
inputPrintFilter->SetChannel(2);
outputPrintFilter->SetInput(MNFfilter->GetOutput());
outputPrintFilter->SetChannel(1);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetInput(invFilter->GetOutput());
invertOutputPrintFilter->SetChannel(5);
invertOutputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetChannel(2);
inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
invertOutputVisuWriter->SetInput(invertOutputPrintFilter->GetOutput());
inputVisuWriter->SetFileName(inpretty);
outputVisuWriter->SetFileName(outpretty);
invertOutputVisuWriter->SetFileName(invoutpretty);
inputVisuWriter->Update();
outputVisuWriter->Update();
invertOutputVisuWriter->Update();
return EXIT_SUCCESS;
}