BayesianFusionImageFilter.cxxΒΆ
Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
Input/multiSpectInterp.tif \
Input/panchro.tif \
Output/BayesianFusion_0.9999.tif \
Output/pretty_BayesianFusion_0.9999.png \
Output/pretty_multiSpect_0.9999.png \
Output/pretty_multiSpectInterp_0.9999.png \
Output/pretty_panchro_0.9999.png \
0.9999
Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
Input/multiSpectInterp.tif \
Input/panchro.tif \
Output/BayesianFusion_0.5.tif \
Output/pretty_BayesianFusion_0.5.png \
Output/pretty_multiSpect_0.5.png \
Output/pretty_multiSpectInterp_0.5.png \
Output/pretty_panchro_0.5.png \
0.5
Example source code (BayesianFusionImageFilter.cxx):
/*
* Copyright (C) 1999-2011 Insight Software Consortium
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// \index{otb::BayesianFusionFilter}
// \index{otb::BayesianFusionFilter!header}
//
// The following example illustrates the use of the
// \doxygen{otb}{BayesianFusionFilter}. The Bayesian data fusion
// relies on the idea that variables of interest, denoted as vector $\mathbf{Z}$,
// cannot be directly observed. They are linked to the observable variables
// $\mathbf{Y}$ through the following error-like model.
//
// \begin{equation}
// \mathbf{Y} = g(\mathbf{Z}) + \mathbf{E}
// \end{equation}
//
// where g($\mathbf{Z}$) is a set of functionals and $\mathbf{E}$ is a
// vector of random errors that are stochastically independent from $\mathbf{Z}$.
// This algorithm uses elementary probability calculus, and several assumptions to compute
// the data fusion. For more explication see Fasbender, Radoux and Bogaert's
// publication \cite{JRadoux}.
// Three images are used :
// \begin{itemize}
// \item a panchromatic image,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// using, e.g. a cubic interpolator.
// \item a float : $\lambda$, the meaning of the weight to be given to the panchromatic
// image compared to the multispectral one.
// \end{itemize}
//
// Let's look at the minimal code required to use this algorithm. First, the following header
// defining the otb::BayesianFusionFilter class must be included.
#include "otbBayesianFusionFilter.h"
#include "otbImage.h"
#include "itkCastImageFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMultiChannelExtractROI.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
int main(int argc, char* argv[])
{
if (argc < 10)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputMultiSpectralImage inputMultiSpectralInterpolatedImage "
<< "inputPanchromatiqueImage outputImage outputImagePrinted "
<< "msPrinted msiPrinted panchroPrinted lambda" << std::endl;
return 1;
}
// The image types are now defined using pixel types and particular
// dimension. The panchromatic image is defined as an \doxygen{otb}{Image}
// and the multispectral one as \doxygen{otb}{VectorImage}.
using InternalPixelType = double;
const unsigned int Dimension = 2;
using PanchroImageType = otb::Image<InternalPixelType, Dimension>;
using MultiSpecImageType = otb::VectorImage<InternalPixelType, Dimension>;
using OutputPixelType = double;
using OutputImageType = otb::VectorImage<OutputPixelType, Dimension>;
// We instantiate reader and writer types
//
using ReaderVectorType = otb::ImageFileReader<MultiSpecImageType>;
using ReaderType = otb::ImageFileReader<PanchroImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
ReaderVectorType::Pointer multiSpectReader = ReaderVectorType::New();
ReaderVectorType::Pointer multiSpectInterpReader = ReaderVectorType::New();
ReaderType::Pointer panchroReader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
multiSpectReader->SetFileName(argv[1]);
multiSpectInterpReader->SetFileName(argv[2]);
panchroReader->SetFileName(argv[3]);
writer->SetFileName(argv[4]);
// The Bayesian data fusion filter type is instantiated using the images types as
// a template parameters.
using BayesianFusionFilterType = otb::BayesianFusionFilter<MultiSpecImageType, MultiSpecImageType, PanchroImageType, OutputImageType>;
// Next the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{itk}{SmartPointer}.
BayesianFusionFilterType::Pointer bayesianFilter = BayesianFusionFilterType::New();
// Now the multi spectral image, the interpolated multi spectral image and
// the panchromatic image are given as inputs to the filter.
bayesianFilter->SetMultiSpect(multiSpectReader->GetOutput());
bayesianFilter->SetMultiSpectInterp(multiSpectInterpReader->GetOutput());
bayesianFilter->SetPanchro(panchroReader->GetOutput());
writer->SetInput(bayesianFilter->GetOutput());
// The BayesianFusionFilter requires defining one parameter : $\lambda$.
// The $\lambda$ parameter can be used to tune the fusion toward either a high color
// consistency or sharp details. Typical $\lambda$ value range in $[0.5, 1[$, where higher
// values yield sharper details. by default $\lambda$ is set at 0.9999.
bayesianFilter->SetLambda(atof(argv[9]));
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is recommended to place update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
try
{
writer->Update();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Create an 3 band images for the software guide
using OutputPixelType2 = unsigned char;
using OutputVectorImageType = otb::VectorImage<OutputPixelType2, Dimension>;
using VectorWriterType = otb::ImageFileWriter<OutputVectorImageType>;
using VectorRescalerType = otb::VectorRescaleIntensityImageFilter<MultiSpecImageType, OutputVectorImageType>;
using VectorRescalerBayesianType = otb::VectorRescaleIntensityImageFilter<OutputImageType, OutputVectorImageType>;
using CasterType = otb::ImageToVectorImageCastFilter<PanchroImageType, MultiSpecImageType>;
using ChannelExtractorType = otb::MultiChannelExtractROI<OutputPixelType2, OutputPixelType2>;
multiSpectReader->GenerateOutputInformation();
multiSpectInterpReader->GenerateOutputInformation();
CasterType::Pointer cast = CasterType::New();
cast->SetInput(panchroReader->GetOutput());
OutputVectorImageType::PixelType minimum, maximum;
minimum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
maximum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
minimum.Fill(0);
maximum.Fill(255);
VectorRescalerType::Pointer vrms = VectorRescalerType::New();
VectorRescalerType::Pointer vrmsi = VectorRescalerType::New();
VectorRescalerBayesianType::Pointer vrb = VectorRescalerBayesianType::New();
vrms->SetInput(multiSpectReader->GetOutput());
vrms->SetOutputMinimum(minimum);
vrms->SetOutputMaximum(maximum);
vrms->SetClampThreshold(0.01);
vrmsi->SetInput(multiSpectInterpReader->GetOutput());
vrmsi->SetOutputMinimum(minimum);
vrmsi->SetOutputMaximum(maximum);
vrmsi->SetClampThreshold(0.01);
vrb->SetInput(bayesianFilter->GetOutput());
vrb->SetOutputMinimum(minimum);
vrb->SetOutputMaximum(maximum);
vrb->SetClampThreshold(0.01);
VectorRescalerType::Pointer rp = VectorRescalerType::New();
rp->SetInput(cast->GetOutput());
minimum.SetSize(1);
maximum.SetSize(1);
minimum.Fill(0);
maximum.Fill(255);
rp->SetOutputMinimum(minimum);
rp->SetOutputMaximum(maximum);
rp->SetClampThreshold(0.01);
ChannelExtractorType::Pointer selecterms = ChannelExtractorType::New();
ChannelExtractorType::Pointer selectermsi = ChannelExtractorType::New();
ChannelExtractorType::Pointer selecterf = ChannelExtractorType::New();
selecterms->SetInput(vrms->GetOutput());
// selecterms->SetExtractionRegion(multiSpectReader->GetOutput()->GetLargestPossibleRegion());
selecterms->SetChannel(2);
selecterms->SetChannel(3);
selecterms->SetChannel(4);
selectermsi->SetInput(vrmsi->GetOutput());
// selectermsi->SetExtractionRegion(multiSpectInterpReader->GetOutput()->GetLargestPossibleRegion());
selectermsi->SetChannel(2);
selectermsi->SetChannel(3);
selectermsi->SetChannel(4);
selecterf->SetInput(vrb->GetOutput());
// selecterf->SetExtractionRegion(bayesianFilter->GetOutput()->GetLargestPossibleRegion());
selecterf->SetChannel(2);
selecterf->SetChannel(3);
selecterf->SetChannel(4);
VectorWriterType::Pointer vectWriterms = VectorWriterType::New();
VectorWriterType::Pointer vectWritermsi = VectorWriterType::New();
VectorWriterType::Pointer vectWriterf = VectorWriterType::New();
VectorWriterType::Pointer vectWriterp = VectorWriterType::New();
vectWriterf->SetFileName(argv[5]);
vectWriterf->SetInput(selecterf->GetOutput());
vectWriterms->SetFileName(argv[6]);
vectWriterms->SetInput(selecterms->GetOutput());
vectWritermsi->SetFileName(argv[7]);
vectWritermsi->SetInput(selectermsi->GetOutput());
vectWriterp->SetFileName(argv[8]);
vectWriterp->SetInput(rp->GetOutput());
try
{
vectWriterms->Update();
vectWritermsi->Update();
vectWriterf->Update();
vectWriterp->Update();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
catch (...)
{
std::cout << "Unknown exception !" << std::endl;
return EXIT_FAILURE;
}
// Let's now run this example using as input the images
// \code{multiSpect.tif} , \code{multiSpectInterp.tif} and \code{panchro.tif}
// provided in the directory \code{Examples/Data}. The results
// obtained for 2 different values for $\lambda$ are shown in figure
// \ref{fig:BayesianImageFusionFilterInput}.
//
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{pretty_multiSpect_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_multiSpectInterp_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_panchro_0.5.eps}
// \itkcaption[Bayesian Data Fusion Example inputs]{Input
// images used for this example (\copyright European Space Imaging).}
// \label{fig:BayesianImageFusionFilterInput}
// \end{figure}
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.9999.eps}
// \itkcaption[Bayesian Data Fusion results]{Fusion results
// for the Bayesian Data Fusion filter for $\lambda = 0.5$ on the left and $\lambda = 0.9999$ on the right.}
// \label{fig:BayesianImageFusionFilterOutput}
// \end{figure}
//
return EXIT_SUCCESS;
}