MarkovClassification3Example.cxxΒΆ
Example usage:
./MarkovClassification3Example Input/QB_Suburb.png Output/MarkovRandomField3_gray_value.png Output/MarkovRandomField3_color_value.png 1.0 20 1.0 1
Example source code (MarkovClassification3Example.cxx):
// This example illustrates the details of the MarkovRandomFieldFilter by using the Fisher distribution
// to model the likelihood energy.
// This filter is an application of the Markov Random Fields for classification.
//
// This example applies the MarkovRandomFieldFilter to
// classify an image into four classes defined by their Fisher distribution parameters L, M and mu.
// The optimization is done using a Metropolis algorithm with a random sampler. The
// regularization energy is defined by a Potts model and the fidelity or likelihood energy is modelled by a
// Fisher distribution.
// The parameter of the Fisher distribution was determined for each class in a supervised step.
// ( See the File OtbParameterEstimatioOfFisherDistribution )
// This example is a contribution from Jan Wegner.
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "otbMarkovRandomFieldFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkScalarToRGBPixelFunctor.h"
#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyFisherClassification.h"
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"
int main(int argc, char* argv[])
{
if (argc != 8)
{
std::cerr << "Missing Parameters " << argc << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage output_gray_label output_color_label lambda iterations "
"optimizerTemperature useRandomValue "
<< std::endl;
return 1;
}
// Then we must decide what pixel type to use for the image. We
// choose to make all computations with double precision.
// The labeled image is of type unsigned char which allows up to 256 different
// classes.
const unsigned int Dimension = 2;
using InternalPixelType = double;
using LabelledPixelType = unsigned char;
using InputImageType = otb::Image<InternalPixelType, Dimension>;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
// We define a reader for the image to be classified, an initialization for the
// classification (which could be random) and a writer for the final
// classification.
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<LabelledImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
const char* outputRescaledImageFileName = argv[3];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
// Finally, we define the different classes necessary for the Markov classification.
// A MarkovRandomFieldFilter is instantiated, this is the
// main class which connect the other to do the Markov classification.
using MarkovRandomFieldFilterType = otb::MarkovRandomFieldFilter<InputImageType, LabelledImageType>;
// An MRFSamplerRandomMAP, which derives from the
// MRFSampler, is instantiated. The sampler is in charge of
// proposing a modification for a given site. The
// MRFSamplerRandomMAP, randomly pick one possible value
// according to the MAP probability.
using SamplerType = otb::MRFSamplerRandom<InputImageType, LabelledImageType>;
// An MRFOptimizerMetropolis, which derives from the
// MRFOptimizer, is instantiated. The optimizer is in charge
// of accepting or rejecting the value proposed by the sampler. The
// MRFSamplerRandomMAP, accept the proposal according to the
// variation of energy it causes and a temperature parameter.
using OptimizerType = otb::MRFOptimizerMetropolis;
// Two energy, deriving from the MRFEnergy class need to be instantiated. One energy
// is required for the regularization, taking into account the relationship between neighboring pixels
// in the classified image. Here it is done with the MRFEnergyPotts, which implements
// a Potts model.
//
// The second energy is used for the fidelity to the original data. Here it is done with a
// MRFEnergyFisherClassification class, which defines a Fisher distribution to model the data.
using EnergyRegularizationType = otb::MRFEnergyPotts<LabelledImageType, LabelledImageType>;
using EnergyFidelityType = otb::MRFEnergyFisherClassification<InputImageType, LabelledImageType>;
// The different filters composing our pipeline are created by invoking their
// New() methods, assigning the results to smart pointers.
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
// Parameter for the MRFEnergyFisherClassification class are created. The shape parameters M, L
// and the weighting parameter mu are computed in a supervised step
if ((bool)(atoi(argv[6])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
optimizer->InitializeSeed(1);
markovFilter->InitializeSeed(1);
}
unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(3 * nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParameters());
// Class 0
parameters[0] = 12.353042; // Class 0 mu
parameters[1] = 2.156422; // Class 0 L
parameters[2] = 4.920403; // Class 0 M
// Class 1
parameters[3] = 72.068291; // Class 1 mu
parameters[4] = 11.000000; // Class 1 L
parameters[5] = 50.950001; // Class 1 M
// Class 2
parameters[6] = 146.665985; // Class 2 mu
parameters[7] = 11.000000; // Class 2 L
parameters[8] = 50.900002; // Class 2 M
// Class 3
parameters[9] = 200.010132; // Class 3 mu
parameters[10] = 11.000000; // Class 3 L
parameters[11] = 50.950001; // Class 3 M
energyFidelity->SetParameters(parameters);
// Parameters are given to the different classes and the sampler, optimizer and
// energies are connected with the Markov filter.
OptimizerType::ParametersType param(1);
param.Fill(atof(argv[6]));
optimizer->SetParameters(param);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[5]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[4]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
// The pipeline is connected. An itkRescaleIntensityImageFilter
// rescales the classified image before saving it.
markovFilter->SetInput(reader->GetOutput());
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
// convert output image to color
using RGBPixelType = itk::RGBPixel<unsigned char>;
using RGBImageType = otb::Image<RGBPixelType, 2>;
using ColorMapFunctorType = itk::Functor::ScalarToRGBPixelFunctor<unsigned long>;
using ColorMapFilterType = itk::UnaryFunctorImageFilter<LabelledImageType, RGBImageType, ColorMapFunctorType>;
ColorMapFilterType::Pointer colormapper = ColorMapFilterType::New();
colormapper->SetInput(rescaleFilter->GetOutput());
// We can now create an image file writer and save the image.
using WriterRescaledType = otb::ImageFileWriter<RGBImageType>;
WriterRescaledType::Pointer writerRescaled = WriterRescaledType::New();
writerRescaled->SetFileName(outputRescaledImageFileName);
writerRescaled->SetInput(colormapper->GetOutput());
writerRescaled->Update();
// Figure~\ref{fig:MRF_CLASSIFICATION3} shows the output of the Markov Random
// Field classification into four classes using the
// Fisher-distribution as likelihood term.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRandomField3_color_value.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
// image for classification into four classes using the Fisher-distribution as
// likehood term. From left to right : original image,
// classification.}
// \label{fig:MRF_CLASSIFICATION3}
// \end{figure}
return EXIT_SUCCESS;
}