AtmosphericCorrectionSequencement.cxxΒΆ
Example usage:
./AtmosphericCorrectionSequencement Input/Romania_Extract.tif \
Output/AtmosphericCorrectionSequencement.tif \
Input/atmosphericCorrectionSequencement_alpha_beta.txt \
Input/atmosphericCorrectionSequencement_solar_illumination.txt \
Input/atmosphericCorrectionSequencement_wavelength_spectral_bands_spot4_1.txt \
27.3 \
4 \
12 \
152.7 \
2.5 \
-77.0 \
1013. \
2.48134 \
0.34400 \
1 \
0.199854 \
2 \
0.020
Example source code (AtmosphericCorrectionSequencement.cxx):
// \index{otb::VegetationIndex}
// \index{otb::VegetationIndex!header}
//
//
// The following example illustrates the application of atmospheric corrections to
// an optical multispectral image similar to Pleiades.
// These corrections are made in four steps :
// \begin{itemize}
// \item digital number to radiance correction;
// \item radiance to refletance image conversion;
// \item atmospheric correction for TOA (top of atmosphere) to TOC (top of canopy)
// reflectance estimation;
// \item correction of the adjacency effects taking into account the neighborhood contribution.
// \end{itemize}
//
// The manipulation of each class used for the different steps and the
// link with the 6S radiometry library will be explained. In particular,
// the API modifications that have been made in version 4.2 will be
// detailed. There was several reasons behind these modifications :
// \begin{itemize}
// \item fix design issues in the framework that were causing trouble
// when setting the atmospheric parameters
// \item allow the computation of the radiative terms by other libraries
// than 6S (such as SMAC method).
// \item allow the users of the OpticalCalibration application to set
// and override each correction parameter.
// \end{itemize}
//
// Let's look at the minimal code required to use this
// algorithm. First, the following header defining the
// \doxygen{otb}{AtmosphericCorrectionSequencement} class must be
// included. For the numerical to radiance image, radiance to
// refletance image, and reflectance to atmospheric correction image
// corrections and the neighborhood correction, four header files are
// required.
#include "otbImageToRadianceImageFilter.h"
#include "otbRadianceToReflectanceImageFilter.h"
#include "otbReflectanceToSurfaceReflectanceImageFilter.h"
#include "otbSurfaceAdjacencyEffectCorrectionSchemeFilter.h"
// In version 4.2, the class \code{SurfaceAdjacencyEffect6SCorrectionSchemeFilter}
// has been renamed into \doxygen{otb}{SurfaceAdjacencyEffectCorrectionSchemeFilter},
// but it still does the same thing.
//
// This chain uses the 6S radiative
// transfer code to compute radiative terms (for instance upward and
// downward transmittance). The inputs needed are separated into
// two categories :
// \begin{itemize}
// \item The atmospheric correction parameters : physical parameters of the
// atmosphere when the image was taken (for instance : atmospheric pressure,
// water vapour amount, aerosol data, ...). They are stored in the class
// \footnote{Before version 4.2, this class was storing all correction
// parameters} \doxygen{otb}{AtmosphericCorrectionParameters}.
// \item The acquisition correction parameters : sensor related information
// about the way the image was taken, usually available with the image
// metadata (for instance : solar angles, spectral
// sensitivity, ...). They are stored in the class
// \doxygen{otb}{ImageMetadataCorrectionParameters}.
// \end{itemize}
//
// The class \doxygen{otb}{RadiometryCorrectionParametersToAtmisphericRadiativeTerms}
// computes the radiative terms using these two types of parameters. It
// contains a single static method that calls the 6S library. The header
// also includes the classes to manipulate correction parameters and radiative
// terms.
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include <string>
int main(int argc, char* argv[])
{
if (argc != 19)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0] << std::endl;
std::cerr << " inputImage outputImage atmosphericCorrectionSequencement_alpha_beta.txt atmosphericCorrectionSequencement_solar_illumination.txt "
"atmosphericCorrectionSequencement_wavelength_spectral_bands_spot4_1.txt SolarZenithalAngle day month SolarAzimuthalAngle "
"ViewingZenithalAngle ViewingAzimuthalAngle AtmosphericPresure WaterVaporAmount OzoneAmount AerosolModel AerosolOpticalThickness "
"WindowRadiusForAdjacencyCorrection PixelSpacing"
<< std::endl;
std::cerr << std::endl;
return 1;
}
// Image types are now defined using pixel types and
// dimension. The input image is defined as an \doxygen{otb}{VectorImage},
// the output image is a \doxygen{otb}{VectorImage}. To simplify, input and
// output image types are the same one.
const unsigned int Dimension = 2;
using PixelType = double;
using ImageType = otb::VectorImage<PixelType, Dimension>;
// We instantiate reader and writer types
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
ReaderType::Pointer reader = ReaderType::New();
// The \code{GenerateOutputInformation()} reader method is called
// to know the number of component per pixel of the image. It is
// recommended to
// place \code{GenerateOutputInformation} calls in a \code{try/catch} block in case
// errors occur and exceptions are thrown.
reader->SetFileName(argv[1]);
try
{
reader->GenerateOutputInformation();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
catch (...)
{
std::cout << "Unknown exception !" << std::endl;
return EXIT_FAILURE;
}
unsigned int nbOfComponent = reader->GetOutput()->GetNumberOfComponentsPerPixel();
//-------------------------------
// The \doxygen{otb}{ImageToRadianceImageFilter}
// type is defined and instancied. This class uses a functor applied
// to each component of each pixel ($\mathbf{X^{k}}$) whose formula is:
//
// \begin{equation}
// \mathbf{L_{TOA}^{k}} = \frac{ X^{k} } { \alpha_{k} } + \beta_{k}.
// \end{equation}
//
// Where :
// \begin{itemize}
// \item $\mathbf{L_{TOA}^{k}}$ is the incident radiance (in
// $W.m^{-2}.sr^{-1}.\mu m^{-1}$);
// \item $\mathbf{X^{k}}$ is the measured digital number (ie. the input image pixel component);
// \item $\alpha_{k}$ is the absolute calibration gain for the channel k;
// \item $\beta_{k}$ is the absolute calibration bias for the channel k.
// \end{itemize}
using ImageToRadianceImageFilterType = otb::ImageToRadianceImageFilter<ImageType, ImageType>;
ImageToRadianceImageFilterType::Pointer filterImageToRadiance = ImageToRadianceImageFilterType::New();
using VectorType = ImageToRadianceImageFilterType::VectorType;
VectorType alpha(nbOfComponent);
VectorType beta(nbOfComponent);
alpha.Fill(0);
beta.Fill(0);
std::ifstream fin;
fin.open(argv[3]);
double dalpha(0.), dbeta(0.);
for (unsigned int i = 0; i < nbOfComponent; ++i)
{
fin >> dalpha;
fin >> dbeta;
alpha[i] = dalpha;
beta[i] = dbeta;
}
fin.close();
// Here, $\alpha$ and $\beta$ are read from an ASCII file given in input,
// stored in a vector and passed to the class.
filterImageToRadiance->SetAlpha(alpha);
filterImageToRadiance->SetBeta(beta);
//-------------------------------
// The \doxygen{otb}{RadianceToReflectanceImageFilter}
// type is defined and instancied.
// This class used a functor applied to each component of each pixel
// of the radiance filter output ($\mathbf{L_{TOA}^{k}}$):
//
// \begin{equation}
// \rho_{TOA}^{k} = \frac{ \pi.\mathbf{L_{TOA}^{k}} } { E_{S}^{k}.cos(\theta_{S}).d/d_{0} }.
// \end{equation}
//
// Where :
// \begin{itemize}
// \item $\mathbf{\rho_{TOA}^{k}}$ is the reflectance measured by the sensor;
// \item $\theta_{S}$ is the zenithal solar angle in degrees;
// \item $E_{S}^{k}$ is the solar illumination out of the atmosphere measured at a distance
// $d_{0}$ from the Earth;
// \item $d/d_{0}$ is the ratio between the Earth-Sun distance at
// the acquisition date and the mean Earth-Sun distance. The ratio can be directly
// given to the class or computed using a 6S routine. TODO
// In the last case (that is the one of this example), the user has to precise
// the month and the day of the acquisition.
// \end{itemize}
using RadianceToReflectanceImageFilterType = otb::RadianceToReflectanceImageFilter<ImageType, ImageType>;
RadianceToReflectanceImageFilterType::Pointer filterRadianceToReflectance = RadianceToReflectanceImageFilterType::New();
using VectorType = RadianceToReflectanceImageFilterType::VectorType;
VectorType solarIllumination(nbOfComponent);
solarIllumination.Fill(0);
fin.open(argv[4]);
double dsolarIllumination(0.);
for (unsigned int i = 0; i < nbOfComponent; ++i)
{
fin >> dsolarIllumination;
solarIllumination[i] = dsolarIllumination;
}
fin.close();
// The solar illumination is read from a ASCII file given in input,
// stored in a vector
// and given to the class.
// Day, month and zenital solar angle are inputs and can be directly given to the class.
filterRadianceToReflectance->SetZenithalSolarAngle(static_cast<double>(atof(argv[6])));
filterRadianceToReflectance->SetDay(atoi(argv[7]));
filterRadianceToReflectance->SetMonth(atoi(argv[8]));
filterRadianceToReflectance->SetSolarIllumination(solarIllumination);
//-------------------------------
// At this step of the chain, radiative information are nedeed to compute
// the contribution of the atmosphere (such as atmosphere transmittance
// and reflectance). Those information will be computed from different
// correction parameters stored in \doxygen{otb}{AtmosphericCorrectionParameters}
// and \doxygen{otb}{ImageMetadataCorrectionParameters} instances.
// These {\em containers} will be given to the static function \texttt{Compute}
// from \doxygen{otb}{RadiometryCorrectionParametersToAtmosphericRadiativeTerms}
// class, which will call a 6S routine that will compute the needed
// radiometric information and store them in a
// \doxygen{otb}{AtmosphericRadiativeTerms} class instance.
// For this,
// \doxygen{otb}{RadiometryCorrectionParametersToAtmosphericRadiativeTerms},
// \doxygen{otb}{AtmosphericCorrectionParameters},
// \doxygen{otb}{ImageMetadataCorrectionParameters} and
// \doxygen{otb}{AtmosphericRadiativeTerms}
// types are defined and instancied.
using RadiometryCorrectionParametersToRadiativeTermsType = otb::RadiometryCorrectionParametersToAtmosphericRadiativeTerms;
using AtmosphericCorrectionParametersType = otb::AtmosphericCorrectionParameters;
using AcquisitionCorrectionParametersType = otb::ImageMetadataCorrectionParameters;
using AtmosphericRadiativeTermsType = otb::AtmosphericRadiativeTerms;
using AerosolModelType = AtmosphericCorrectionParametersType::AerosolModelType;
using FilterFunctionValuesType = otb::FilterFunctionValues;
using ValuesVectorType = FilterFunctionValuesType::ValuesVectorType;
AtmosphericCorrectionParametersType::Pointer dataAtmosphericCorrectionParameters = AtmosphericCorrectionParametersType::New();
AcquisitionCorrectionParametersType::Pointer dataAcquisitionCorrectionParameters = AcquisitionCorrectionParametersType::New();
AtmosphericRadiativeTermsType::Pointer dataAtmosphericRadiativeTerms = AtmosphericRadiativeTermsType::New();
float minSpectralValue(0.);
float maxSpectralValue(0.);
float userStep(0.);
float value(0.);
unsigned int nbBands(0);
unsigned int nbValuesPerBand(0);
std::string sString;
ValuesVectorType vector;
fin.open(argv[5]);
fin >> nbBands;
for (unsigned int i = 0; i < nbBands; ++i)
{
vector.clear();
fin >> sString;
fin >> minSpectralValue;
fin >> maxSpectralValue;
fin >> userStep;
fin >> nbValuesPerBand;
for (unsigned int j = 0; j < nbValuesPerBand; ++j)
{
fin >> value;
vector.push_back(value);
}
FilterFunctionValuesType::Pointer functionValues = FilterFunctionValuesType::New();
functionValues->SetFilterFunctionValues(vector);
functionValues->SetMinSpectralValue(minSpectralValue);
functionValues->SetMaxSpectralValue(maxSpectralValue);
functionValues->SetUserStep(userStep);
dataAcquisitionCorrectionParameters->SetWavelengthSpectralBandWithIndex(i, functionValues);
}
fin.close();
// The \doxygen{otb}{ImageMetadataCorrectionParameters} class stores
// several parameters that are generally present in the image metadata :
// \begin{itemize}
// \item The zenithal and azimutal solar angles that describe the solar incidence
// configuration (in degrees);
// \item The zenithal and azimuthal viewing angles that describe the viewing
// direction (in degrees);
// \item The month and the day of the acquisition;
// \item The filter function that is the values of the filter function for one
// spectral band, from $\lambda_{inf}$ to $\lambda_{sup}$ by step of 2.5 nm.
// One filter function by channel is required.
// This last parameter are read in text files, the other one are directly given to the class.
// \end{itemize}
//
// When this container is not set in the ReflectanceToSurfaceReflectance
// filter, it is automatically filled using the image metadata. The
// following lines show that it is also possible to set the values manually.
// Set parameters
dataAcquisitionCorrectionParameters->SetSolarZenithalAngle(static_cast<double>(atof(argv[6])));
dataAcquisitionCorrectionParameters->SetSolarAzimutalAngle(static_cast<double>(atof(argv[9])));
dataAcquisitionCorrectionParameters->SetViewingZenithalAngle(static_cast<double>(atof(argv[10])));
dataAcquisitionCorrectionParameters->SetViewingAzimutalAngle(static_cast<double>(atof(argv[11])));
dataAcquisitionCorrectionParameters->SetMonth(atoi(argv[8]));
dataAcquisitionCorrectionParameters->SetDay(atoi(argv[7]));
// The \doxygen{otb}{AtmosphericCorrectionParameters} class stores
// physical parameters of the atmosphere that are not impacted
// by the viewing angles of the image :
// \begin{itemize}
// \item The atmospheric pressure;
// \item The water vapor amount, that is, the total water vapor content over vertical
// atmospheric column;
// \item The ozone amount that is the Stratospheric ozone layer content;
// \item The aerosol model that is the kind of particles (no aerosol, continental,
// maritime, urban, desertic);
// \item The aerosol optical thickness at 550 nm that is the is the Radiative impact
// of aerosol for the reference wavelength 550 nm;
// \end{itemize}
dataAtmosphericCorrectionParameters->SetAtmosphericPressure(static_cast<double>(atof(argv[12])));
dataAtmosphericCorrectionParameters->SetWaterVaporAmount(static_cast<double>(atof(argv[13])));
dataAtmosphericCorrectionParameters->SetOzoneAmount(static_cast<double>(atof(argv[14])));
AerosolModelType aerosolModel = static_cast<AerosolModelType>(::atoi(argv[15]));
dataAtmosphericCorrectionParameters->SetAerosolModel(aerosolModel);
dataAtmosphericCorrectionParameters->SetAerosolOptical(static_cast<double>(atof(argv[16])));
// Once those parameters are loaded, they are used by the 6S library
// to compute the needed radiometric information. The
// RadiometryCorrectionParametersToAtmosphericRadiativeTerms class
// provides a static function to perform this step\footnote{Before version
// 4.2, it was done with the filter
// AtmosphericCorrectionParametersTo6SAtmosphericRadiativeTerms}.
AtmosphericRadiativeTermsType::Pointer atmosphericRadiativeTerms =
RadiometryCorrectionParametersToRadiativeTermsType::Compute(dataAtmosphericCorrectionParameters, dataAcquisitionCorrectionParameters);
// The output is stored inside an instance of the
// \doxygen{otb}{AtmosphericRadiativeTerms} class.
// This class contains (for each channel of the image)
// \begin{itemize}
// \item The Intrinsic atmospheric reflectance that takes into account for the molecular scattering
// and the aerosol scattering attenuated by water vapor absorption;
// \item The spherical albedo of the atmosphere;
// \item The total gaseous transmission (for all species);
// \item The total transmittance of the atmosphere from sun to ground (downward transmittance)
// and from ground to space sensor (upward transmittance).
// \end{itemize}
//-------------------------------
// Atmospheric corrections can now start.
// First, an instance of \doxygen{otb}{ReflectanceToSurfaceReflectanceImageFilter} is created.
using ReflectanceToSurfaceReflectanceImageFilterType = otb::ReflectanceToSurfaceReflectanceImageFilter<ImageType, ImageType>;
ReflectanceToSurfaceReflectanceImageFilterType::Pointer filterReflectanceToSurfaceReflectanceImageFilter =
ReflectanceToSurfaceReflectanceImageFilterType::New();
// The aim of the atmospheric correction is to invert the surface reflectance
// (for each pixel of the input image) from the TOA reflectance and from simulations
// of the atmospheric radiative functions corresponding to the geometrical conditions
// of the observation and to the atmospheric components.
// The process required to be applied on each pixel of the image, band by band with
// the following formula:
//
// \begin{equation}
// \rho_{S}^{unif} = \frac{ \mathbf{A} }{ 1 + Sx\mathbf{A} }
// \end{equation}
// Where,
// \begin{equation}
// \mathbf{A} = \frac{ \rho_{TOA} - \rho_{atm} }{ T(\mu_{S}).T(\mu_{V}).t_{g}^{all gas} }
// \end{equation}
//
// With :
// \begin{itemize}
// \item $\rho_{TOA}$ is the reflectance at the top of the atmosphere;
// \item $\rho_{S}^{unif}$ is the ground reflectance under assumption
// of a lambertian surface and an uniform environment;
// \item $\rho_{atm}$ is the intrinsic atmospheric reflectance;
// \item $t_{g}^{all gas}$ is the spherical albedo of the atmosphere;
// \item $T(\mu_{S})$ is the downward transmittance;
// \item $T(\mu_{V})$ is the upward transmittance.
// \end{itemize}
// All those parameters are contained in the AtmosphericRadiativeTerms
// container.
filterReflectanceToSurfaceReflectanceImageFilter->SetAtmosphericRadiativeTerms(atmosphericRadiativeTerms);
//-------------------------------
// Next (and last step) is the neighborhood correction.
// For this, the SurfaceAdjacencyEffectCorrectionSchemeFilter class is used.
// The previous surface reflectance inversion is performed under the assumption of a
// homogeneous ground environment. The following step allows correcting the adjacency
// effect on the radiometry of pixels. The method is based on the decomposition of
// the observed signal as the summation of the own contribution of the target pixel and
// of the contributions of neighbored pixels moderated by their distance to the target pixel.
// A simplified relation may be :
// \begin{equation}
// \rho{S} = \frac{ \rho_{S}^{unif}.T(\mu_{V}) - <\rho{S}>.t_{d}(\mu_{V}) }{ exp(-\delta/\mu_{V}) }
// \end{equation}
// With :
// \begin{itemize}
// \item $\rho_{S}^{unif}$ is the ground reflectance under assumption of an homogeneous environment;
// \item $T(\mu_{V})$ is the upward transmittance;
// \item $t_{d}(\mu_{S})$ is the upward diffus transmittance;
// \item $exp(-\delta/\mu_{V})$ is the upward direct transmittance;
// \item $\rho_{S}$ is the environment contribution to the pixel target reflectance in the total
// observed signal.
// \begin{equation}
// \rho{S} = \sum{j}\sum{i}f(r(i, j))\times \rho_{S}^{unif}(i, j)
// \end{equation}
// where,
// \begin{itemize}
// \item r(i, j) is the distance between the pixel(i, j) and the central pixel of the window in $km$;
// \item f(r) is the global environment function.
// \begin{equation}
// f(r) = \frac{t_{d}^{R}(\mu_{V}).f_{R}(r)+t_{d}^{A}(\mu_{V}).f_{A}(r)}{ t_{d}(\mu_{V}) }
// \end{equation}
// \end{itemize}
// \end{itemize}
// The neighborhood consideration window size is given by the window radius.
//
// An instance of \doxygen{otb}{SurfaceAdjacencyEffectCorrectionSchemeFilter}
// is created. This class has an interface quite similar to
// \doxygen{otb}{ReflectanceToSurfaceReflectance}. They both need radiative terms
// (\doxygen{otb}{AtmosphericRadiativeTerms}), so it is possible to compute
// them outside the filter and set them directly in the filter. The other
// solution is to give as input the two parameters containers ("atmospheric"
// and "acquisition" parameters), then the filter will compute the radiative
// terms internally. If the "acquisition" correction parameters are not
// present, the filter will try to get them from the image metadata.
using SurfaceAdjacencyEffectCorrectionSchemeFilterType = otb::SurfaceAdjacencyEffectCorrectionSchemeFilter<ImageType, ImageType>;
SurfaceAdjacencyEffectCorrectionSchemeFilterType::Pointer filterSurfaceAdjacencyEffectCorrectionSchemeFilter =
SurfaceAdjacencyEffectCorrectionSchemeFilterType::New();
// Four inputs are needed to compute the neighborhood contribution:
// \begin{itemize}
// \item The radiative terms (stored in the AtmosphericRadiativeTerms container);
// \item The zenithal viewing angle;
// \item The neighborhood window radius;
// \item The pixel spacing in kilometers.
// \end{itemize}
filterSurfaceAdjacencyEffectCorrectionSchemeFilter->SetAtmosphericRadiativeTerms(atmosphericRadiativeTerms);
filterSurfaceAdjacencyEffectCorrectionSchemeFilter->SetZenithalViewingAngle(dataAcquisitionCorrectionParameters->GetViewingZenithalAngle());
filterSurfaceAdjacencyEffectCorrectionSchemeFilter->SetWindowRadius(atoi(argv[17]));
filterSurfaceAdjacencyEffectCorrectionSchemeFilter->SetPixelSpacingInKilometers(static_cast<double>(atof(argv[18])));
//-------------------------------
WriterType::Pointer writer = WriterType::New();
// At this step, each filter of the chain is instancied and every one has its
// input parameters set. A name can be given to the output image, each filter
// can be linked to the next one and create the final processing chain.
writer->SetFileName(argv[2]);
filterImageToRadiance->SetInput(reader->GetOutput());
filterRadianceToReflectance->SetInput(filterImageToRadiance->GetOutput());
filterReflectanceToSurfaceReflectanceImageFilter->SetInput(filterRadianceToReflectance->GetOutput());
filterSurfaceAdjacencyEffectCorrectionSchemeFilter->SetInput(filterReflectanceToSurfaceReflectanceImageFilter->GetOutput());
writer->SetInput(filterSurfaceAdjacencyEffectCorrectionSchemeFilter->GetOutput());
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is recommended to place this call in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
try
{
writer->Update();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
catch (...)
{
std::cout << "Unknown exception !" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}