OTB integration in operational processing chains

OTB User Days 2021
CS GROUP France – Key elements

480 EMPLOYEES
 › Engineers and Experts

49 M€ REVENUES
 › France
 › Germany
 › Netherlands
 › Romania
 › Canada

40 Years Experience in Space
 › Earth Observation
 › Telecom
 › Science
 › Navigation
 › Launchers
CS GROUP France – OTB Integrator and Promotor

• OTB = development framework for image processing over large dataset
 • Flexible: open source, bindings (python)...
 • Completeness: many algorithms available
 • Performance
 • Maintainability: documentation, strong development rules, ...

• OTB used for operational development with strong constraints
• OTB training activities for developers or users
• member of the PSC
• Contribution to OTB
• Sponsor of the OTB User Days since 2015
Operational projects with OTB

- THEIA/ MUSCATE chains:
 - MAJA L2A Processor
 - WASP
 - LIS
 - BioPhy
 - IOTA²

- Copernicus components:
 - Sentinel-2 PDGS as main component of IPF S2
 - Land – High Resolution Snow and Ice monitoring service
 - RUS

- Sentinel-1 Chains: S1-Tiling, DiapOTB

- Large scale agriculture production Sen2AGRI / SEN4CAP / SEN4STAT / WorldCereal projects

- Kalideos production chain

- SNAP integration since V6, MAJA integrated in SNAP9

- AI4Geo
RUS – bringing expertise to Sentinel data users

More than 2500 users for 3 first years

OTB provide to all users

IOTA² Trainings last year

Non Commercial activities
Students, trainers, researchers, decision-makers, general public, SMEs

Free access
Powerful computing environment with scalable VM and full support

Support
Expertise to visualize, process, interpret geospatial data & information

Process large Sentinel datasets possible for any user

Training
Face-to-face sessions, e-learning and webinars for all users
AI4GEO: AUTOMATIC 3D GEOSPATIAL INFORMATION PRODUCTION

Development of a collaborative Virtual Research Environment optimised for Earth Observation data, AI models and 3D visualization

METIS APPLICATION: Scientific Virtual Research Environment
ENVIRONMENT: HPC / CLOUD
METIS BRICKS:
› Big Data processing management (HPC)
› Virtual Research Environment
› Artificial Intelligence tools
› Automatic workflow
› Collaboration tools
› Tools integration: OTB, IOTA²

DATA:
› Satellite and aerial imagery,
› In-situ data
› Lidar 3D points cloud
Open source operational processing chains...

CHAINS:

- **LIS**: Snow cover extent detection algorithm
- **MAJA**: Atmospheric correction and cloud screening software

REMOTE MODULES:

- **S1Tiling**: Ortho-rectification of Sentinel-1 data on Sentinel-2 grid
- **WASP**: Create monthly syntheses of cloud-free reflectances
- **DiapOTB**: SAR Interferometric processing chain
Remote Module

• Easy way to develop new features in the OTB framework

• Template module available*
 • a library (cxx source in src folder)
 • headers and templated classes (include folder)
 • a OTB Application (app folder)
 • tests for C++ sources, applications and python wrappers (test folder)

*https://gitlab.orfeo-toolbox.org/remote_modules/remote-module-template
MAJA, a chain based on OTB

- Atmospheric correction and cloud screening software
- Multi-temporal chain

<table>
<thead>
<tr>
<th>MAJA 3.3.x</th>
<th>MAJA 4.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Main C++ program</td>
<td>• Open source</td>
</tr>
<tr>
<td>• Read/Write products in C++</td>
<td>• Orchestration written in python</td>
</tr>
<tr>
<td>• Algorithms: C++ Filters</td>
<td>• Read/Write products in python</td>
</tr>
<tr>
<td></td>
<td>• Framework of OTB Applications</td>
</tr>
<tr>
<td></td>
<td>• StartMaja included within maja</td>
</tr>
</tbody>
</table>
MAJA, multitemporal chain processing

BACKWARD MODE
OTB App Handler in MAJA

- OtbAppHandler interface: OTB application instance

```python
from orchestrator.cots.otb.otb_app_handler import OtbAppHandler

# Launch the app
param_reflectance = {
    "tocr": dict_of_output.get("RayleighPTOCR"),
    "edg": dict_of_input.get("L1Reader").get_value("IPEDGSubOutput"),
    "sat": dict_of_input.get("L1Reader").get_value("IPSATSubOutput"),
    "waterthreshold": water_treshold,
    "bluebandtocr": bluebandtocr_idx,
    "redbandtocr": redbandtocr_idx,
    "nirbandtocr": nirbandtocr_idx,
    "correlbandtocr": correlbandtocr_idx,
    "bluereflectancethresholdvalue": dict_of_input.get("L2COMM").get_value_f("
    "CloudBlueReflectanceThreshold""),
    "redreflectancethresholdvalue": dict_of_input.get("L2COMM").get_value_f("
    "CloudRedReflectanceThreshold""),
}

reflectance_app = OtbAppHandler("CloudReflectance", param_reflectance, write_output=true)
```
OTB pipeline manager in MAJA

- **OtbPipelineManager**:
 - Add_otb_app(app) : add pipeline
 - Free_otb_app : free pipeline
 - Get_last_app : get the last application of the pipeline
 - Automatically free up the pipeline after being removed

```python
from orchestrator.cots.otb.otb_app_handler import OtbAppHandler
from orchestrator.cots.otb.otb_pipeline_manager import OtbPipelineManager

a_pipeline = OtbPipelineManager()

app1 = OtbAppHandler('BandMath', {'in': 'tmp.tif', 'out': 'out1.tiff', 'exp': 'im1b1'}, Write_output=False)
a_pipeline.add_otb_app(app1)

b_pipeline = OtbPipelineManager()
app2 = OtbAppHandler('BandMath', {'in': app1.getOutput()['out'], 'out': 'out2.tiff', 'exp': 'im1b1'},
Write_output=False)
b_pipeline.add_otb_app(app2)  # Pipeline b depends on pipeline a cannot erase pipeline a
```
Conclusion

• OTB is currently a component for operational chains
• How to improve OTB integration in chains?
• Reuse the different experiences:
 • Dask?
 • Python integration at library level?
• Share a common processing framework?
• Share best practices with other projects!