# BlockMatching¶

Performs block-matching to estimate pixel-wise disparities between two images.

## Description¶

This application allows one to performs block-matching to estimate pixel-wise disparities for a pair of images in epipolar geometry.

This application is part of the stereovision pipeline. It can be used after having computed epipolar grids (with StereoRectificationGridGenerator) and resampled each input image into epipolar geometry (with GridBasedImageResampling).

The application searches locally for the displacement between a reference image and a secondary image. The correspondence is evaluated for each pixel, based on a pair of local neighborhood windows. The displacement evaluated can be 1D (along lines) or 2D. Parameters allow setting the minimum and maximum disparities to search (both for horizontal and vertical directions). A winner-take-all approach is used to select the best match. There are different metrics implemented to evaluate the match between two local windows:

- SSD: Sum of Squared Distances
- NCC: Normalized Cross-Correlation
- Lp: Lp pseudo norm

Once the best integer disparity is found, an optional step of sub-pixel disparity estimation can be performed, with various algorithms (triangular interpolation, parabollic interpolation, dichotimic search). As post-processing, there is an optional step of median filtering on the disparities. One can chose input masks (related to the left and right input image) of pixels for which the disparity should be investigated. Additionally, two criteria can be optionally used to disable disparity investigation for some pixel: a no-data value, and a threshold on the local variance. This allows one to speed-up computation by avoiding to investigate disparities that will not be reliable anyway. For efficiency reasons, if the image of optimal metric values is desired, it will be concatenated to the output image (which will then have three bands: horizontal disparity, vertical disparity and metric value). One can split these images afterward.

## Parameters¶

### Input and output data¶

This group of parameters allows setting the input and output images.

**Left input image** `-io.inleft image`

*Mandatory*

The left input image (reference).
It should have the same size and same physical space as the right input. This image can be generated by GridBasedImageResampling

**Right input image** `-io.inright image`

*Mandatory*

The right input (secondary).
It should have the same size and same physical space as the left input. This image can be generated by GridBasedImageResampling

**The output disparity map** `-io.out image [dtype]`

*Mandatory*

An image containing the estimated disparities as well as the metric values if the option is used. If no metric is output and no sub-pixel interpolation is done, pixel type canbe a signed integer. In the other cases, floating point pixel is advised.

**The output mask corresponding to all criterions** `-io.outmask image [dtype]`

An output mask image corresponding to all citerions (see masking parameters). Only required if variance threshold or nodata criterions are set. Output pixel type is unsigned 8bit by default.

**Flag to output optimal metric values as well** `-io.outmetric bool`

*Default value: false*

If enabled, the output image will have a third component with metric optimal values

### Image masking parameters¶

This group of parameters allows determining the masking parameters to prevent disparities estimation for some pixels of the left image

**Mask to discard left pixels** `-mask.inleft image`

This parameter allows providing a custom mask for the left image. Block matching will be only perform on pixels inside the mask (non-zero values).

**Mask to discard right pixels** `-mask.inright image`

This parameter allows providing a custom mask for the right image. Block matching will be perform only on pixels inside the mask (non-zero values).

**Discard pixels with no-data value** `-mask.nodata float`

*Default value: 0*

This parameter allows discarding pixels whose value is equal to the user-defined no-data value.

**Discard pixels with low local variance** `-mask.variancet float`

*Default value: 100*

This parameter allows discarding pixels whose local variance is too small (the size of the neighborhood is given by the radius parameter)

### Block matching parameters¶

This group of parameters allow tuning the block-matching behaviour

**Block-matching metric** `-bm.metric [ssd|ncc|lp]`

*Default value: ssd*

Metric to evaluate matching between two local windows.

**Sum of Squared Distances**

Sum of squared distances between pixels value in the metric window**Normalized Cross-Correlation**

Normalized Cross-Correlation between the left and right windows**Lp pseudo-norm**

Lp pseudo-norm between the left and right windows.

### Lp pseudo-norm options¶

**p value** `-bm.metric.lp.p float`

*Default value: 1*

Value of the p parameter in Lp pseudo-norm (must be positive).

**Radius of blocks** `-bm.radius int`

*Default value: 3*

The radius (in pixels) of blocks in Block-Matching

**Minimum horizontal disparity** `-bm.minhd int`

*Mandatory*

Minimum horizontal disparity to explore (can be negative)

**Maximum horizontal disparity** `-bm.maxhd int`

*Mandatory*

Maximum horizontal disparity to explore (can be negative)

**Minimum vertical disparity** `-bm.minvd int`

*Mandatory*

Minimum vertical disparity to explore (can be negative)

**Maximum vertical disparity** `-bm.maxvd int`

*Mandatory*

Maximum vertical disparity to explore (can be negative)

**Sub-pixel interpolation** `-bm.subpixel [none|parabolic|triangular|dichotomy]`

*Default value: none*

Estimate disparities with sub-pixel precision

**None**

No sub-pixel search**Parabolic fit**

The metric values closest to the best match are used in order to fit a parabola to the local extremum of the metric surface. The peak position of this parabola is output.**Triangular fit**

The metric values closest to the best match are used in order to fit a triangular peak to the local extremum of the metric surface. The peak position of this triangle is output.**Dichotomy search**

An iterative dichotomic search is performed to find the best sub-pixel position. The window in the right image is resampled at sub-pixel positions to estimate the match.

**Computation step** `-bm.step int`

*Default value: 1*

Location step between computed disparities. Disparities will be computed every ‘step’ pixels in the left image (step for both rows and columns). For instance, a value of 1 corresponds to the classic dense disparity map.

**X start index** `-bm.startx int`

*Default value: 0*

X start index of the subsampled grid (wrt the input image grid). See parameter bm.step

**Y start index** `-bm.starty int`

*Default value: 0*

Y start index of the subsampled grid (wrt the input image grid). See parameter bm.step

### Median filtering of disparity map¶

Use a median filter to get a smooth disparity map

**Radius** `-bm.medianfilter.radius int`

Radius (in pixels) for median filter

**Incoherence threshold** `-bm.medianfilter.incoherence float`

Incoherence threshold between original and filtered disparity

**Initial disparities** `-bm.initdisp [none|uniform|maps]`

*Default value: none*

**None**

No initial disparity used**Uniform initial disparity**

Use an uniform initial disparity estimate**Initial disparity maps**

Use initial disparity maps to define the exploration area. This area in the right image is centered on the current position shifted by the initial disparity estimate, and has a given exploration radius in horizontal and vertical directions.

### Uniform initial disparity options¶

**Horizontal initial disparity** `-bm.initdisp.uniform.hdisp int`

*Default value: 0*

Value of the uniform horizontal disparity initial estimate (in pixels)

**Vertical initial disparity** `-bm.initdisp.uniform.vdisp int`

*Default value: 0*

Value of the uniform vertical disparity initial estimate (in pixels)

**Horizontal exploration radius** `-bm.initdisp.uniform.hrad int`

*Default value: 0*

Horizontal exploration radius around the initial disparity estimate (in pixels)

**Vertical exploration radius** `-bm.initdisp.uniform.vrad int`

*Default value: 0*

Vertical exploration radius around the initial disparity estimate (in pixels)

### Initial disparity maps options¶

**Horizontal initial disparity map** `-bm.initdisp.maps.hmap image`

*Mandatory*

Map of the initial horizontal disparities

**Vertical initial disparity map** `-bm.initdisp.maps.vmap image`

*Mandatory*

Map of the initial vertical disparities

**Horizontal exploration radius** `-bm.initdisp.maps.hrad int`

*Default value: 0*

Horizontal exploration radius around the initial disparity estimate (in pixels)

**Vertical exploration radius** `-bm.initdisp.maps.vrad int`

*Default value: 0*

Vertical exploration radius around the initial disparity estimate (in pixels)

**Available RAM (MB)** `-ram int`

*Default value: 256*

Available memory for processing (in MB).

**Load parameters from XML** `-inxml filename.xml`

Load application parameters from an XML file.

**Save parameters to XML** `-outxml filename.xml`

Save application parameters to an XML file.

## Examples¶

From the command-line:

```
otbcli_BlockMatching -io.inleft StereoFixed.png -io.inright StereoMoving.png -bm.minhd -10 -bm.maxhd 10 -mask.variancet 10 -io.out MyDisparity.tif
```

From Python:

```
import otbApplication
app = otbApplication.Registry.CreateApplication("BlockMatching")
app.SetParameterString("io.inleft", "StereoFixed.png")
app.SetParameterString("io.inright", "StereoMoving.png")
app.SetParameterInt("bm.minhd", -10)
app.SetParameterInt("bm.maxhd", 10)
app.SetParameterFloat("mask.variancet", 10)
app.SetParameterString("io.out", "MyDisparity.tif")
app.ExecuteAndWriteOutput()
```