![]() |
OTB
9.1.1
Orfeo Toolbox
|
#include <otbAutoencoderModel.h>
Inheritance diagram for otb::AutoencoderModel< TInputValue, NeuronType >:
Collaboration diagram for otb::AutoencoderModel< TInputValue, NeuronType >:Public Types | |
| typedef Superclass::ConfidenceListSampleType | ConfidenceListSampleType |
| typedef Superclass::ConfidenceSampleType | ConfidenceSampleType |
| typedef Superclass::ConfidenceValueType | ConfidenceValueType |
| typedef itk::SmartPointer< const Self > | ConstPointer |
| typedef Superclass::InputListSampleType | InputListSampleType |
| typedef Superclass::InputSampleType | InputSampleType |
| typedef Superclass::InputValueType | InputValueType |
| typedef shark::LinearModel< shark::RealVector, NeuronType > | LayerType |
| typedef InputListSampleType::Pointer | ListSamplePointerType |
| typedef shark::ConcatenatedModel< shark::RealVector > | ModelType |
| typedef shark::LinearModel< shark::RealVector, shark::LinearNeuron > | OutLayerType |
| typedef itk::SmartPointer< Self > | Pointer |
| typedef Superclass::ProbaListSampleType | ProbaListSampleType |
| typedef Superclass::ProbaSampleType | ProbaSampleType |
| typedef AutoencoderModel | Self |
| typedef MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | Superclass |
| typedef Superclass::TargetListSampleType | TargetListSampleType |
| typedef Superclass::TargetSampleType | TargetSampleType |
| typedef Superclass::TargetValueType | TargetValueType |
Public Types inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
| typedef MachineLearningModel | Self |
| typedef itk::Object | Superclass |
| typedef itk::SmartPointer< Self > | Pointer |
| typedef itk::SmartPointer< const Self > | ConstPointer |
| typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::ValueType | InputValueType |
| typedef MLMSampleTraits< itk::VariableLengthVector< TInputValue > >::SampleType | InputSampleType |
| typedef itk::Statistics::ListSample< InputSampleType > | InputListSampleType |
| typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::ValueType | TargetValueType |
| typedef MLMTargetTraits< itk::VariableLengthVector< TInputValue > >::SampleType | TargetSampleType |
| typedef itk::Statistics::ListSample< TargetSampleType > | TargetListSampleType |
| typedef MLMTargetTraits< double >::ValueType | ConfidenceValueType |
| typedef MLMTargetTraits< double >::SampleType | ConfidenceSampleType |
| typedef itk::Statistics::ListSample< ConfidenceSampleType > | ConfidenceListSampleType |
| typedef itk::VariableLengthVector< double > | ProbaSampleType |
| typedef itk::Statistics::ListSample< ProbaSampleType > | ProbaListSampleType |
Public Member Functions | |
| bool | CanReadFile (const std::string &filename) override |
| bool | CanWriteFile (const std::string &filename) override |
| virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
| virtual itk::Array< double > | GetBeta () |
| virtual double | GetEpsilon () |
| virtual double | GetInitFactor () |
| virtual std::string | GetLearningCurveFileName () |
| virtual const char * | GetNameOfClass () const |
| virtual itk::Array< double > | GetNoise () |
| virtual itk::Array< unsigned int > | GetNumberOfHiddenNeurons () |
| virtual unsigned int | GetNumberOfIterations () |
| virtual unsigned int | GetNumberOfIterationsFineTuning () |
| virtual itk::Array< double > | GetRegularization () |
| virtual itk::Array< double > | GetRho () |
| virtual bool | GetWriteLearningCurve () |
| virtual bool | GetWriteWeights () |
| void | Load (const std::string &filename, const std::string &name="") override |
| void | Save (const std::string &filename, const std::string &name="") override |
| virtual void | SetBeta (itk::Array< double > _arg) |
| virtual void | SetEpsilon (double _arg) |
| virtual void | SetInitFactor (double _arg) |
| virtual void | SetLearningCurveFileName (std::string _arg) |
| virtual void | SetNoise (itk::Array< double > _arg) |
| virtual void | SetNumberOfHiddenNeurons (itk::Array< unsigned int > _arg) |
| virtual void | SetNumberOfIterations (unsigned int _arg) |
| virtual void | SetNumberOfIterationsFineTuning (unsigned int _arg) |
| virtual void | SetRegularization (itk::Array< double > _arg) |
| virtual void | SetRho (itk::Array< double > _arg) |
| virtual void | SetWriteLearningCurve (bool _arg) |
| virtual void | SetWriteWeights (bool _arg) |
| void | Train () override |
| template<class T > | |
| void | TrainNetwork (shark::AbstractStoppingCriterion< T > &criterion, shark::Data< shark::RealVector > &, std::ostream &) |
| template<class T > | |
| void | TrainOneLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &) |
| template<class T > | |
| void | TrainOneSparseLayer (shark::AbstractStoppingCriterion< T > &criterion, unsigned int, shark::Data< shark::RealVector > &, std::ostream &) |
Public Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
| virtual const char * | GetNameOfClass () const |
| TargetSampleType | Predict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const |
| virtual void | SetDimension (unsigned int _arg) |
| virtual unsigned int | GetDimension () |
| TargetListSampleType::Pointer | PredictBatch (const InputListSampleType *input, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const |
| bool | HasConfidenceIndex () const |
| bool | HasProbaIndex () const |
| virtual void | SetInputListSample (InputListSampleType *_arg) |
| itkGetObjectMacro (InputListSample, InputListSampleType) | |
| virtual const InputListSampleType * | GetInputListSample () const |
| itkGetObjectMacro (TargetListSample, TargetListSampleType) | |
| itkGetObjectMacro (ConfidenceListSample, ConfidenceListSampleType) | |
| virtual void | SetTargetListSample (TargetListSampleType *_arg) |
| virtual bool | GetRegressionMode () |
| void | SetRegressionMode (bool flag) |
Static Public Member Functions | |
| static Pointer | New () |
Protected Member Functions | |
| AutoencoderModel () | |
| virtual TargetSampleType | DoPredict (const InputSampleType &input, ConfidenceValueType *quality=nullptr, ProbaSampleType *proba=nullptr) const override |
| virtual void | DoPredictBatch (const InputListSampleType *, const unsigned int &startIndex, const unsigned int &size, TargetListSampleType *, ConfidenceListSampleType *quality=nullptr, ProbaListSampleType *proba=nullptr) const override |
| ~AutoencoderModel () override | |
Protected Member Functions inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
| MachineLearningModel () | |
| ~MachineLearningModel () override=default | |
| void | PrintSelf (std::ostream &os, itk::Indent indent) const override |
Private Attributes | |
| ModelType | m_Encoder |
| std::vector< LayerType > | m_InLayers |
| itk::Array< unsigned int > | m_NumberOfHiddenNeurons |
| OutLayerType | m_OutLayer |
| unsigned int | m_NumberOfIterations |
| unsigned int | m_NumberOfIterationsFineTuning |
| double | m_Epsilon |
| itk::Array< double > | m_Regularization |
| itk::Array< double > | m_Noise |
| itk::Array< double > | m_Rho |
| itk::Array< double > | m_Beta |
| double | m_InitFactor |
| bool | m_WriteLearningCurve |
| std::string | m_LearningCurveFileName |
| bool | m_WriteWeights |
Additional Inherited Members | |
Protected Attributes inherited from otb::MachineLearningModel< itk::VariableLengthVector< TInputValue >, itk::VariableLengthVector< TInputValue > > | |
| InputListSampleType::Pointer | m_InputListSample |
| InputListSampleType::Pointer | m_ValidationListSample |
| TargetListSampleType::Pointer | m_TargetListSample |
| ConfidenceListSampleType::Pointer | m_ConfidenceListSample |
| bool | m_RegressionMode |
| bool | m_IsRegressionSupported |
| bool | m_ConfidenceIndex |
| bool | m_ProbaIndex |
| bool | m_IsDoPredictBatchMultiThreaded |
| unsigned int | m_Dimension |
Autoencoder model wrapper class
Definition at line 78 of file otbAutoencoderModel.h.
| typedef Superclass::ConfidenceListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceListSampleType |
Definition at line 97 of file otbAutoencoderModel.h.
| typedef Superclass::ConfidenceSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceSampleType |
Definition at line 96 of file otbAutoencoderModel.h.
| typedef Superclass::ConfidenceValueType otb::AutoencoderModel< TInputValue, NeuronType >::ConfidenceValueType |
Confidence map related typedefs.
Definition at line 95 of file otbAutoencoderModel.h.
| typedef itk::SmartPointer<const Self> otb::AutoencoderModel< TInputValue, NeuronType >::ConstPointer |
Definition at line 84 of file otbAutoencoderModel.h.
| typedef Superclass::InputListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputListSampleType |
Definition at line 88 of file otbAutoencoderModel.h.
| typedef Superclass::InputSampleType otb::AutoencoderModel< TInputValue, NeuronType >::InputSampleType |
Definition at line 87 of file otbAutoencoderModel.h.
| typedef Superclass::InputValueType otb::AutoencoderModel< TInputValue, NeuronType >::InputValueType |
Definition at line 86 of file otbAutoencoderModel.h.
| typedef shark::LinearModel<shark::RealVector, NeuronType> otb::AutoencoderModel< TInputValue, NeuronType >::LayerType |
Definition at line 103 of file otbAutoencoderModel.h.
| typedef InputListSampleType::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::ListSamplePointerType |
Definition at line 89 of file otbAutoencoderModel.h.
| typedef shark::ConcatenatedModel<shark::RealVector> otb::AutoencoderModel< TInputValue, NeuronType >::ModelType |
Neural network related typedefs.
Definition at line 102 of file otbAutoencoderModel.h.
| typedef shark::LinearModel<shark::RealVector, shark::LinearNeuron> otb::AutoencoderModel< TInputValue, NeuronType >::OutLayerType |
Definition at line 104 of file otbAutoencoderModel.h.
| typedef itk::SmartPointer<Self> otb::AutoencoderModel< TInputValue, NeuronType >::Pointer |
Definition at line 83 of file otbAutoencoderModel.h.
| typedef Superclass::ProbaListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaListSampleType |
Definition at line 100 of file otbAutoencoderModel.h.
| typedef Superclass::ProbaSampleType otb::AutoencoderModel< TInputValue, NeuronType >::ProbaSampleType |
Definition at line 99 of file otbAutoencoderModel.h.
| typedef AutoencoderModel otb::AutoencoderModel< TInputValue, NeuronType >::Self |
Definition at line 81 of file otbAutoencoderModel.h.
| typedef MachineLearningModel<itk::VariableLengthVector<TInputValue>, itk::VariableLengthVector<TInputValue> > otb::AutoencoderModel< TInputValue, NeuronType >::Superclass |
Definition at line 82 of file otbAutoencoderModel.h.
| typedef Superclass::TargetListSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetListSampleType |
Definition at line 92 of file otbAutoencoderModel.h.
| typedef Superclass::TargetSampleType otb::AutoencoderModel< TInputValue, NeuronType >::TargetSampleType |
Definition at line 91 of file otbAutoencoderModel.h.
| typedef Superclass::TargetValueType otb::AutoencoderModel< TInputValue, NeuronType >::TargetValueType |
Definition at line 90 of file otbAutoencoderModel.h.
|
protected |
Definition at line 61 of file otbAutoencoderModel.hxx.
|
overrideprotected |
Definition at line 68 of file otbAutoencoderModel.hxx.
|
overridevirtual |
Is the input model file readable and compatible with the corresponding classifier ?
Definition at line 281 of file otbAutoencoderModel.hxx.
|
overridevirtual |
Is the input model file writable and compatible with the corresponding classifier ?
Definition at line 295 of file otbAutoencoderModel.hxx.
| virtual::itk::LightObject::Pointer otb::AutoencoderModel< TInputValue, NeuronType >::CreateAnother | ( | void | ) | const |
|
overrideprotectedvirtual |
Definition at line 357 of file otbAutoencoderModel.hxx.
|
overrideprotectedvirtual |
Definition at line 383 of file otbAutoencoderModel.hxx.
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
overridevirtual |
Load the model from file
Definition at line 317 of file otbAutoencoderModel.hxx.
|
static |
|
overridevirtual |
Save the model to file
Definition at line 301 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
overridevirtual |
Train the machine learning model
Definition at line 73 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
| void otb::AutoencoderModel< TInputValue, NeuronType >::TrainNetwork | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
| shark::Data< shark::RealVector > & | samples, | ||
| std::ostream & | File | ||
| ) |
Definition at line 244 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
| void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneLayer | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
| unsigned int | layer_index, | ||
| shark::Data< shark::RealVector > & | samples, | ||
| std::ostream & | File | ||
| ) |
Definition at line 149 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
| void otb::AutoencoderModel< TInputValue, NeuronType >::TrainOneSparseLayer | ( | shark::AbstractStoppingCriterion< T > & | criterion, |
| unsigned int | layer_index, | ||
| shark::Data< shark::RealVector > & | samples, | ||
| std::ostream & | File | ||
| ) |
Definition at line 198 of file otbAutoencoderModel.hxx.
References otbMsgDevMacro.
|
private |
Training parameters
Definition at line 185 of file otbAutoencoderModel.h.
|
private |
Internal Network
Definition at line 173 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 181 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 186 of file otbAutoencoderModel.h.
|
private |
Definition at line 174 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 190 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 183 of file otbAutoencoderModel.h.
|
private |
Definition at line 176 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 179 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 180 of file otbAutoencoderModel.h.
|
private |
Definition at line 175 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 182 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 184 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 189 of file otbAutoencoderModel.h.
|
private |
Training parameters
Definition at line 191 of file otbAutoencoderModel.h.
1.8.17